公司介绍
1
商品介绍
2
科学计算模拟软体3

产品 Product










ultraMPP: ultra-fast Massive Parallel Platform
  • general-purpose parallelization platform for all physical problems modelled with PDEs

ultraSPARTSultra-fast Statistical PARTicle Simulation
  • general rarefied gas dynamics
  • non-reacting and reacting hypersonic flow
  • spacecraft RCS plume impingement analysis
  • physical vapor deposition (e.g., OLED)
  • comet gas/dust plume modeling

ultraPICAultra-fast Particle-In-Cell Monte Carlo Analysis
  • DC/RF magnetron sputtering plasma
  • PECVD
  • etching plasma
  • ion thruster
  • LEO spacecraft surface charging modeling

ultraNSultra-fast Navier-Stokes Equation Modeling Package
  • general thermal-fluid problem

ultraFMultra-fast Plasma Fluid Modeling Package
  • inductively coupled plasma (ICP)
  • PECVD
  • microwave plasma
  • electron cyclotron resonance plasma (ECR)
  • atmospheric-pressure glow discharge
  • discharge streamer modeling

Product Introduction

xls.png
Plasma T.I. Product Introduction
下载档案



多重物理平行计算模拟软体平台 ultraMPP

ultraMPP

ultraMPP stands for ultra-fast Massive Parallel Platform that is a general-purpose parallelization platform for physical problems modeled by PDEs and is a pain free software selection to save time and ease burden of parallel code development for simulation experts. 
ultraMPP is an unique Application Programming Interface (API) designed by Plasma T.I., which can help to develop multi-physics software from scientific and engineering concept to high performance computing.
  • complex geometry using 2D/2D-axisymmetric/3D hybrid unstructured grid with parallel computing
  • ​​greatly shortening development time of parallel solver
a810a9770fafcf3f1dd0ddf6d50560ef.PNG

Parallelization with ultraMPP

e4ef118546498f2dc30956155ccbbf55.PNG

Special Features

  • Easy to do the simulation which coupling with multi-physics :
            Data synchronization between two modules​
  • Ready to do the scalable parallel computing on PC-Cluster or single workstation.
  • ​​Possible to build your own numerical scheme
c0d4ea5e4d7dcf81ebb23587f7a383d2.PNG

Poisson Equation Solver Example

⏺ 2D/2D-axisymmetric/3D hybrid unstructured  grid are supported by ultraMPP
e7284d44ad3be33fc01f1c97d3936ebf.PNG

Euler Equation Solver Example

⏺ 2D, 4% bump, M∞=1.653

bef2f6f58fdc84f3faac90a79488783b.PNG


⏺ 3D sphere bump (4%), M∞=1.653
30c1f81bc279ce408b40274a72925746.PNG
 Boeing787 & F16
5de54c438a8833d883e80e1dcabbf068.PNG
TOP

ultraMPP Brochure
pdf.png

ultraMPP brochure
下载档案

ultraMPP User Manual

pdf.png
ultraMPP软体操作手册_v2.0.5
下载档案

Parallel Programming with ultraMPP

xls.png
parallel programming with ultraMPP
下载档案


平行化稀薄热气流场求解器 ultraSPARTS

ultraSPARTS

ultraSPARTS (ultra-fast Statistical PARTicle Simulation Package), is a particle-based C++ object-oriented parallel DSMC simulation code designed for efficiently solving gas flow problems with rarefaction and strong non-equilibrium. This software employs the direct simulation Monte Carlo (DSMC) method for directly solving the Boltzmann equation statistically. It can deal with rarefied gas flows with complex geometry using 2D/2D-axisymmetric/3D hybrid unstructured grid. The package has been applied for modeling general rarefied gas dynamics such as hypersonic non-reacting and reacting gas flows, vacuum pumping flow, satellite plume impingement, MEMS/NEMS gas flow, comet gas/dust plume (paper reference 1-9), and PVD deposition (OLED, CIG, E-beam, etc.),  to name a few.
226719c2df03cb4fe07a9e427529549a.PNG
Several advanced computational techniques are used to reduce computational time, which include parallel computing using domain decomposition through message passing interface (MPI), variable time-step scheme (VTS) for reducing number of iteration towards steady state, transient adaptive subcell scheme (TAS) for improving collision quality, virtual mesh refinement (VMR) for resolving regions with large properties gradient, conservative weighting scheme (CWS) for treating trace species efficiently. In addition, a special technique, named as DREAM (DSMC Rapid Ensemble Average Method), is developed to reduce the statistical scatter from unsteady DSMC simulations.

In addition, for dealing with complex non-equilibrium flow problems, several important physical models are included in ultraSPARTS. They include different molecular models (HS/VHS/VSS) for reproducing viscosity and diffusivity of gases, no time counter (NTC) for treating collision probability efficiently, multi-species, translational-rotational energy exchange, translational-vibrational energy exchange, total collision energy model (TCE) for dissociation and exchange reactions [Bird, 1976], three-body collision model for recombination reaction [Boyd, 1992], surface reaction/deposition, pressure/mass flow controlled boundary conditions and pumping boundary conditions for internal gas flows, periodic boundary conditions and inclusion of gravity effect.

E-Beam Metal Deposition Simulation

a12456b4e0101fe273fb356d977657f0.PNG

CIGS Film Deposition for Solar Cell

3c0984b31bdcd69ba187190fba074eea.PNG

OLED Film Deposition Simulation

2d45528e9adeb3de76813437560ea78d.PNG
384f0ecd3d6842eed23b11c4a334c85c.PNG

Astronomy & Astrophysics

4dbcde54aea0465b669b43b08702b5b1.PNG

Aerospace & Space Applications

49964918d6dd01937332e5c066b1da9e.PNG







Hypersonic Reacting Flows
5bea420be7f20b7b6f56e992d2d9b2c0.PNG




1355c10a6f3032be39864787519c2b63.PNG


987912ce8a0616834c555538a9e360a5.PNG


6309164fad6faf6fe4aa8289492e039e.PNG
d6073a83bd51c1b1ffe64c5d6c6f2e37.PNG

ultraSPARTS Brochure

pdf.png
ultraSPARTS brochure
下载档案

ultraSPARTS Simulation Examples

xls.png
ultraSPARTS simulation example
下载档案

ultraSPARTS Editor User Guide

pdf.png
ultraSPARTS editor user guide
下载档案

DSMC for ANSYS -- ultraSPARTS

pdf.png
20181022 DSMC for Ansys -- ultraSPARTS
下载档案

Paper References for Astronomy Application

1. S. Finklenburg*, N. Thomas, C.-C. Su, J.-S. Wu, “The spatial distribution of water in the inner coma of comet 9P/Temple 1: Comparison between models and observations,” Icarus, Vol. 236, pp. 9-23, July 2014.

2. N. Thomas et al., “Re-distribution of particles across the nucleus of comet 67P/Churyumov-Gerasimenko,” Astronomy & Astrophysics, Vol. 583, A17, 2015. 

3. 
I. Lai, et al., “DSMC Simulations of Ceres’ Water Plumes and Exosphere,” EGU General Assembly, Austria, 2015.

4. Y. Liao, et al., “3D Direct Simulation Monte Carlo Modelling of the Inner Gas Coma of Comet 67P/ Churyumov-Gerasimenko: A Parameter Study,” Earth Moon & Planets, Vol. 117(1), pp. 41-64, 2016.

5. I. Lai, et al., “Transport and Distribution of Hydroxyl Radicals and Oxygen Atoms from H2O Photodissociation in the Inner Coma of Comet 67P/Churyumov-Gerasimenko,” Earth Moon & Planets, Vol. 117(1), pp. 23-39, 2016.

6. Z.Y. Lin, et al., “Observations and Analysis of A Curved Jet in the Coma of Comet 67P/Churyumov-Gerasimenko,” Astronomy & Astrophysics, 588, L3, 2016. 

7. R. Marschall, “Modelling of the inner gas and dust coma of comet 67P/Churyumov-Gerasimenko using ROSINA/COPS and OSIRIS data - First results,” Astronomy & Astrophysics, 589, A90, 2016.

8. I. Lai, et al., “Gas outflow and dust transport of comet 67P/Churyumov-Gerasimenko,” Monthly Notices of the Royal Astronomical Society, Vol. 462, Issue Suppl_1, S533-S546, Feb. 2017. 

9. R. Marschall, et al., “Cliffs vs. Plains: Can ROSINA/COPS and OSIRIS data of comet 67P/Churyumov-Gerasimenko in autumn 2014 constrain inhomogeneous outgassing?” Astronomy & Astrophysics, Vol. 605, Issue A&A, A112, Sep. 2017.

10. R. Marschall, et al., "A comparison of multiple Rosetta data sets and 3D model calculations of 67P/Churyumov-Gerasimenko coma around equinox" Icarus, Volume 328, 
August 2019, Pages 104-126.

平行化低压电浆粒子模型求解器 ultraPICA

ultraPICA

ultraPICA (ultra-fast Particle-In-Cell Monte Carlo Analysis) is the software based on particle-in-cell with Monte Carlo method for the kinetic simulation of particles interacting with electromagnetic fields. ultraPICA is the perfect method to investigate plasmas such as PECVD, hall thruster of spacecraft, non-equilibrium properties (IEDF, EEDF, IADF) for feature-scale simulation, and so on. ultraPICA can simulate on 2D/3D/axisymmetric unstructured grids with high-performance parallel computing technology. Dynamic Loading Balance (DLB) between each processor is executed automatically for the best efficiency of computation, which is rarely seen from other software packages. The package can be used for modeling general very low-pressure gas discharges such as DC/RF magnetron sputtering plasma, ICP and UHV PECVD, to name a few.
1e13b456705c1fc38c2b38c88c7ec9cf.PNG
43f49bd1a01c7cc9bdbb7f9cbb3f8d50.PNG


ef3775b46a4a3450958ba4fb173bf9ca.PNG

平行化计算流体力学Navier-Stoks方程求解器 ultraNS

ultraNS

ultraNS (ultra-fast Navier-Stokes Equation Modeling Package) is a sophisticated 2D/2D-axisymmetric/3D unstructured-grid density-based gas flow solver for modeling flow, heat transfer, two-phase and reactions at all speeds. Based on RAPIT, it is possible to apply ultraNS for studying multi-physics of plasma-flow interaction through the seamless integration with ultraFM and ultraPICA.

Transonic Flow Past a F-16 Figter 
 (M=0.864, NS + k-omega turbulence model, 9.4 M cells, 80 cores)

b5a9d5b8e68b165d31e83e00aa6e23b9.jpg

fb760ca8d7525245803a5c2ee8d92de4.jpg




020e01ba297ac274f81bf9382632c008.jpg

393a9707d8ab0406be8a007b1c7a1ffd.jpg

13613551d435b3a99e05d8d19bf7586e.PNG
7cc57b4483bdd1a8f3d4921ba284f5bf.jpg
         





  





High-Speed Gas Flows -- HB-II 
 (Hypersonic Flow: AOA=10 degree)

6872612ec1cf726914885b6b0e535f73.PNG

ultraNS Brochure

pdf.png
ultraNS brochure
下载档案

平行化电浆流体模型求解器 ultraFM

ultraFM

ultraFM (ultra-fast Plasma Fluid Modeling Package) is a continuum-based simulation code designed for solving the velocity moments of the Boltzmann equation considering charged particles. It can deal with gas discharges (low-temperature plasma) with complex geometry using 2D/2D-axisymmetric/3D hybrid unstructured grid with parallel computing through message passing interface (MPI) that can be run on typical PC clusters. The package can be used to model general low-temperature plasma or gas discharges with complex chemistry and complex geometry such as PECVD, ICP, and APP, to name a few.

Example: 2D-axisymmetric Argon Plasma Simulation by ultraFM
eee083cc4c6899089721a094e0fbb0a6.png